Charge movement and depolarization-contraction coupling in arthropod vs. vertebrate skeletal muscle.
نویسندگان
چکیده
Voltage-dependent charge movement has been characterized in arthropod skeletal muscle. Charge movement in scorpion (Centuroides sculpturatus) muscle is distinguishable from that in vertebrate skeletal muscle by criteria of kinetics, voltage dependence, and pharmacology. The function of scorpion charge movement is gating of calcium channels in the sarcolemma, and depolarization-contraction coupling relies on calcium influx through these channels.
منابع مشابه
Electrical Models of Excitation-Contraction Coupling and Charge Movement in Skeletal Muscle
A B ST R A C T The consequences of ionic current flow from the T system to the sarcoplasmic reticulum (SR) of skeletal muscle are examined. The Appendix analyzes a simple model in which the conductance gx, linking T system and SR, is in series with a parallel resistor and capacitor having fixed values. The conductance gx is supposed to increase rapidly with depolarization and to decrease slowly...
متن کاملElectrical models of excitation-contraction coupling and charge movement in skeletal muscle
The consequences of ionic current flow from the T system to the sarcoplasmic reticulum (SR) of skeletal muscle are examined. The Appendix analyzes a simple model in which the conductance gx, linking T system and SR, is in series with a parallel resistor and capacitor having fixed values. The conductance gx is supposed to increase rapidly with depolarization and to decrease slowly with repolariz...
متن کاملEffects of D-600 on intramembrane charge movement of polarized and depolarized frog muscle fibers
Intramembrane charge movement has been measured in frog cut skeletal muscle fibers using the triple vaseline gap voltage-clamp technique. Ionic currents were reduced using an external solution prepared with tetraethylammonium to block potassium currents, and O sodium + tetrodotoxin to abolish sodium currents. The internal solution contained 10 mM EGTA to prevent contractions. Both the internal ...
متن کاملFast voltage gating of Ca2+ release in frog skeletal muscle revealed by supercharging pulses.
1. In single frog skeletal muscle fibres, we utilized supercharging voltage clamp command pulses to boost the rate of depolarization in the transverse tubular system (T-system) such that 95 % of steady-state potential is achieved in < 2 ms (as indicated by fluorescent potentiometric dye signals detected from a global illumination region). Signals detected near the edge of muscle fibres indicate...
متن کاملEffects of conformational peptide probe DP4 on bidirectional signaling between DHPR and RyR1 calcium channels in voltage-clamped skeletal muscle fibers.
In skeletal muscle, excitation-contraction coupling involves the activation of dihydropyridine receptors (DHPR) and type-1 ryanodine receptors (RyR1) to produce depolarization-dependent sarcoplasmic reticulum Ca²⁺ release via orthograde signaling. Another form of DHPR-RyR1 communication is retrograde signaling, in which RyRs modulate the gating of DHPR. DP4 (domain peptide 4), is a peptide corr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 83 22 شماره
صفحات -
تاریخ انتشار 1986